Effective Moduli of Composite Materials in Dynamic Problems

Shangchow Chang* Northwestern Polytechnical University, Xian, China

This article discusses the magnitude of the errors and their influencing parameters in the use of the effective modulus theory to solve dynamic problems of composite materials, based on the development of rigorous solutions of elasticity to the natural axial shear vibration of a laminated composite beam. Exact formulas for the natural frequency and for the vibrating mode in both the fixed and the free boundary cases are worked out. Numerical values of natural frequencies obtained from our solutions are compared to those provided by the effective modulus theory. From the comparison, a number of conclusions of practical significance have been drawn. One of them states that the dynamic effective moduli strongly depend on both the frequency and vibrating mode and therefore can be approximated to simple constants only crudely.

Nomenclature

= amplitude parameter \boldsymbol{A}

= shear modulus of an isotropic material

 G_{xz} = shear modulus of an orthotropic material in the xz

 G_{yz} = shear modulus of an orthotropic material in the yz plane

S = ply cross section

= ply thickness \boldsymbol{a}

b= beam and ply width

= space-dependent portion of the harmonic displacew ment

 au_{xz} = shearing stress in the xz plane

= shearing stress in the yz plane

= circular frequency

= ply density

= the Laplacian

Superscripts

= non-negative integer

Subscripts

= effective quantity

= ply number

Introduction

OMPOSITE materials are usually made up of a large number of constituents with different geometries and properties. As a result, the complex heterogeneity and nonuniformity render the stress analysis of composite materials difficult to deal with, even for static cases. The situation deteriorates further when the dynamic effect of loading is considered. The additional complexity of mass heterogeneity and the presence of a myriad of various waves makes this problem an almost unsurmounted one to be solved exactly. Consequently, in solving the dynamic problem of composite materials, one must usually resort to the effective modulus theory, which reduces the real heterogeneous material to a hypothetic homogeneous one and has been widely used in the stress analysis of composite materials under static loading. Yet it is well known that the effective modulus theory is unable to provide an exact representation of the response of a composite medium to dynamic loading.² Therefore, it is of practical interest to study the magnitude of the errors and the influencing parameters that are the consequence of applying the effective modulus theory to dynamic problems of composite materials.

In a preliminary attempt at such an investigation, the most straightforward procedure seems to be to compare some exact solutions of elasticity to dynamic problems of composite materials with the corresponding approximate solutions obtained from the effective modulus theory, and then try to deduce significant conclusions from the comparison. Though there are a number of available solutions to the dynamic problem of composite materials, most of them deal with unbounded or bounded composite media idealized as homogeneous orthotropic bodies.3-5 There still seem to be few rigorous elasticity solutions to real composite media of finite dimensions under dynamic loading. Hence, in this article we first investigate the natural axial shear vibration of a laminated composite beam and work out the elasticity solution to the problem, then compare the solution to that produced by the effective modulus method. From the comparison, a number of general conclusions on the validity of the effective modulus theory are drawn. Among them it is found that the dynamic effective moduli vary with both the frequency and the vibrating mode and cannot be regarded as simple constants. This deficiency in the effective modulus theory can be used to explain why the theory cannot provide precise solutions to the dynamic problem of composite materials.

Fixed Boundary—Problem and Solution

In this section, we study the natural axial shear vibration of a layered composite beam of a rectangular cross section. The beam is composed of plies of arbitrary orthotropic materials of arbitrary thickness, with one of their material principal directions parallel to the beam axis orientation. On its lateral surface the beam is supported so that the axial displacement along the cross section boundary vanishes.

Using τ_{xz} , τ_{yz} , and w to denote the space-dependent portions of the harmonic shearing stresses and displacement in the problem, respectively, the stress/displacement relations and the equation of motion for the ith ply can be expressed in the following form:

$$\tau_{xzi} = G_{xzi} \frac{\partial w_i}{\partial x} \tag{1a}$$

$$\tau_{xzi} = G_{xzi} \frac{\partial w_i}{\partial x}$$
 (1a)
$$\tau_{yzi} = G_{yzi} \frac{\partial w_i}{\partial y}$$
 (1b)

Received July 29, 1985; revision received May 27, 1986. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1986. All rights reserved.

^{*}Associate Professor of Aeronautics, Department of Aircraft Engineering.

$$G_{xzi} \frac{\partial^2 w_i}{\partial x^2} + G_{yzi} \frac{\partial^2 w_i}{\partial y^2} + \rho_i \Omega^2 w_i = 0$$
 (2)

For the particular case of an isotropic ply $G_{xzi} = G_{yzi} = G_i$, the equation of motion can be written in the simplified expression⁶

$$\nabla^2 w_i + \frac{\rho_i}{G_i} \Omega^2 w_i = 0 \tag{3}$$

For the sake of simplicity, henceforth we will develop our formulation and solution to the problem for a composite beam consisting of isotropic plies. However, as will be shown in the following subsection, the formulation and solution thus developed can also be applied without any essential alterations to composite beams made up of orthotropic plies.

Double-Layer Configuration

In this subsection we solve the problem of the particular case of double-layer configuration (see Fig. 1). The governing equation and the boundary and interface conditions dominating this case can be expressed as follows:

$$\nabla^2 w_i + \frac{\rho_i}{G_i} \Omega^2 w_i = 0$$
 in S_i , $i = 1,2$ (4)

On the boundary

$$w_1 = w_2 = 0 (5)$$

On the interface of S_1 and S_2

$$w_1 = w_2 \tag{6a}$$

$$G_1 = \frac{\partial w_1}{\partial x} = G_2 \frac{\partial w_2}{\partial x} \tag{6b}$$

By direct verification we immediately see that the following formulas

$$w_1 = A_1^m \sin \frac{m\pi y}{h} \sin \frac{m_1 \pi (x + a_1)}{a_1}$$
 (7)

$$w_2 = A_2^m \sin \frac{m\pi y}{h} \sin \frac{m_2 \pi (x - a_2)}{a_2}$$
 (8)

satisfy Eqs. (4) and (5) provided we take m = 1,2,3,... and

$$\frac{\rho_i}{G_i} \Omega^2 = \left(\frac{m\pi}{b}\right)^2 + \left(\frac{m_i\pi}{a_i}\right)^2, \qquad i = 1, 2$$
 (9)

To satisfy the interface condition we substitute Eqs. (7) and (8) into Eq. (6) to obtain

$$A_1^m \sin m_1 \pi + A_2^m \sin m_2 \pi = 0 \tag{10}$$

$$m_1 a_2 G_1 A_1^m \cos m_1 \pi - m_2 a_1 G_2 A_2^m \cos m_2 \pi = 0$$
 (11)

Utilizing Eqs. (9) and (10), Eq. (11) can be rewritten in the following form suitable for frequency evaluation:

$$G_{1}\sqrt{(\rho_{1}/G_{1})\Omega^{2} - (m\pi/b)^{2}} \tan \left[a_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}}\right] + G_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}} \times \tan \left[a_{1}\sqrt{(\rho_{1}/G_{1})\Omega^{2} - (m\pi/b)^{2}}\right] = 0$$
(12)

Using Eqs. (9-11) or (12), all unknowns in the problem can be determined except the amplitude parameter A_1^m or A_2^m which can be of arbitrary nonzero value.

Note that for small frequencies the quantities under the square root in Eq. (12) may take negative values. In such cases it is preferable to rewrite Eq. (12) using complex function relations to avoid complex variable computations. For instance, for $(\rho_2/G_2)\Omega^2 > (m\pi/b)^2 > (\rho_1/G_1)\Omega^2$ Eq. (12) can be rewritten as

$$G_{1}\sqrt{(m\pi/b)^{2} - (\rho_{1}/G_{1})\Omega^{2}} \tan \left[a_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}}\right]$$

$$+ G_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}}$$

$$\times \tanh \left[a_{1}\sqrt{(m\pi/b)^{2} - (\rho_{1}/G_{1})\Omega^{2}}\right] = 0$$
(13)

In case the composite beam is laminated by orthotropic plies, the appropriate governing equation, boundary, and interface conditions can be put into the following form:

$$\frac{\partial^2 w_i}{\partial \bar{x}^2} + \frac{\partial^2 w_i}{\partial y^2} + \frac{\rho_i}{G_{xzi}} \Omega^2 w_i = 0 \qquad \text{in } S_i, \ i = 1, 2$$
 (14)

On the boundary

$$w_1 = w_2 = 0 (15)$$

On the interface

$$w_1 = w_2 \tag{16a}$$

$$\bar{G}_{xz1} \frac{\partial w_1}{\partial \bar{x}} = \bar{G}_{xz2} \frac{\partial w_2}{\partial \bar{x}}$$
 (16b)

where

$$\bar{x} = \sqrt{G_{yz1}/G_{xz1}} x$$
 for $-a_1 \le x < 0$
 $\bar{x} = \sqrt{G_{yz2}/G_{xz2}} x$ for $0 \le x \le a_2$
 $\bar{G}_{xzi} = \sqrt{G_{xzi}/G_{yzi}} G_{xzi}$, $i = 1, 2$

Equations (14-16) are identical to Eqs. (4-6) for isotropic plies in mathematical form. We then see that in the formulation and solution to our problem an orthotropic ply can be treated just as an isotropic one, only its thickness a_i should be replaced by $\sqrt{(G_{yzi})/(G_{xzi})}a_i$ and its shear modulus G_{xzi} by $\sqrt{(G_{yzi})/(G_{yzi})}G_{xzi}$. The preceding analysis then justifies our preference for isotropic plies in this investigation.

Multilayer Configuration

In this situation (see Fig. 2) the governing equation and the boundary and interface conditions are expressed by the following equations:

$$\nabla^2 w_i + \frac{\rho_i}{G_i} \Omega^2 w_i = 0$$
 in S_i , $i = 1, 2, ..., N$ (17)

On the boundary

$$w_1 = w_2 = \dots = w_N = 0 \tag{18}$$

On the i-1, i interface

$$w_{i-1} = w_i \tag{19a}$$

$$G_{i-1} \frac{\partial w_{i-1}}{\partial x} = G_i \frac{\partial w_i}{\partial x}, \quad i = 2, 3, \dots, N-1$$
 (19b)

We propose the solutions of w_i in the problem such that

$$w_1 = A_1^m \sin \frac{m\pi y}{b} \sin \frac{m_1 \pi (x + a_1)}{a_1}$$
 (20)

$$w_{2} = A_{2(1)}^{m} \sin \frac{m\pi y}{b} \sin \frac{m_{2}\pi (x - a_{2})}{a_{2}}$$

$$+ A_{2(2)}^{m} \sin \frac{m\pi y}{b} \sin \frac{m_{2}\pi x}{a_{2}}$$

$$(21)$$

$$w_{i} = A_{i(1)}^{m} \sin \frac{m\pi y}{b} \sin \frac{m_{i}\pi [x - (a_{2} + a_{3} + \dots + a_{i})]}{a_{i}}$$

$$+ A_{i(2)}^{m} \sin \frac{m\pi y}{b} \sin \frac{m_{i}\pi [x - (a_{2} + a_{3} + \dots + a_{i-1})]}{a_{i}},$$

$$i = 3, 4, \dots, N-1$$
 (22)

$$w_N = A_N^m \sin \frac{m\pi y}{b} \sin \frac{m_N \pi [x - (a_2 + a_3 + \dots + a_N)]}{a_N}$$
 (23)

Following a procedure similar to that described in the preceding subsection, it can be seen that the above displacement functions satisfy all the aforementioned requirements, provided we assume m = 1, 2, 3, ..., determine m_i using the following formula

$$\frac{\rho_i}{G_i} \Omega^2 = \left(\frac{m\pi}{b}\right)^2 + \left(\frac{m_i\pi}{a_i}\right)^2, \qquad i = 1, 2, ..., N$$
 (24)

and find $A_1^m, A_{2(1)}^m, A_{2(2)}^m, \dots, A_N^m$ through the following system of equations:

$$A_1^m \sin m_1 \pi = -A_{2(1)}^m \sin m_2 \pi \tag{25}$$

$$G_1 A_1^m \frac{m_1 \pi}{a_1} \cos m_1 \pi = G_2 \left(A_{2(1)}^m \frac{m_2 \pi}{a_2} \cos m_2 \pi + A_{2(2)}^m \frac{m_2 \pi}{a_2} \right)$$

(26)

$$A_{i(2)}^{m} \sin m_{i}\pi = -A_{i+1(1)}^{m} \sin m_{i+1}\pi, \quad i=2,3,...,N-2$$
 (27)

$$G_{i}\left(A_{i(1)}^{m} \frac{m_{i}\pi}{a_{i}} + A_{i(2)}^{m} \frac{m_{i}\pi}{a_{i}} \cos m_{i}\pi\right)$$

$$= G_{i+1}\left(A_{i+1(1)}^{m} \frac{m_{i+1}\pi}{a_{i+1}} \cos m_{i+1}\pi + A_{i+1(2)}^{m} \frac{m_{i+1}\pi}{a_{i+1}}\right),$$

$$i = 2, 3, ..., N-2 \qquad (28)$$

$$A_{N-1(2)}^{m} \sin m_{N-1} \pi = -A_{N}^{m} \sin m_{N} \pi \tag{29}$$

$$G_{N-1}\left(A_{N-1(1)}^{m} \frac{m_{N-1}\pi}{a_{N-1}} + A_{N-1(2)}^{m} \frac{m_{N-1}\pi}{a_{N-1}} \cos m_{N-1}\pi\right)$$

$$= G_{N}\left(A_{N}^{m} \frac{m_{N}\pi}{a_{N}} \cos m_{N}\pi\right)$$
(30)

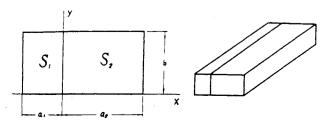


Fig. 1 Double-layer configuration.

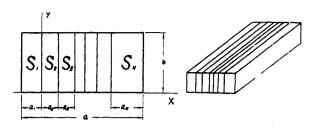


Fig. 2 Multilayer configuration.

Table 1 Numerical values of natural frequency parameter $(a_0\Omega^2)/(G_0\pi^2)$ for $G_1/G_2=2$

$(\rho_0 \Omega^2)/(G_2 \pi^2)$ for $G_1/G_2 = 2$										
m=1										
	n	1	2	3	4	5				
	2	0.703	1.676	3.540	5.738	8.990				
	4	0.708	1.801	3.462	5.595	8.923				
	6	0.708	1.696	3.619	5.940	8.943				
	8	0.708	1.703	3.313	6.162	9.174				
N	10	0.708	1.705	3.457	5.540	9.431				
	12	0.708	1.706	3.358	5.628	8.364				
	14	0.708	1.706	3.364	5.659	8.538				
	16	0.708	1.707	3.367	5.674	8.601				
	18	0.708	1.707	3.369	5.683	8.633				
	20	0.708	1.707	3.370	5.689	8.652				
	Ωe^{a}	0.667	1.667	3.333						
Er	, % b	5.8	2.3	1.1						
Ge	c/G_2^c	1.416	1.366	1.348						
<i>m</i> = 2										
	n	1	2	3	4	5				
	2	1.618	2.841	4.563	6.869	9.990				
	4	1.803	2.814	4.527	6.706	10.000				
	6	1.822	2.833	4.655	6.970	13.229				
	8	1.828	2.834	4.480	7.206	10.177				
N	10	1.830	2.834	4.491	6.731	10.479				
	12	1.831	2.834	4.495	6.785	9.576				
	14	1.832	2.834	4.497	6.804	9.707				
	16	1.832	2.834	4.498	6.813	9.754				
	18	1.833	2.834	4.498	6.819	9.778				
	20	1.833	2.834	4.499	6.822	9.792				
	Ωe^{a}	1.667	2.667	4.333						
E_{I}	, % ^b	9.1	5.9	3.7						
	e/G_2^c	1.466	1.417	1.385						
m=3										
	n	1	2	3	4	5				
	2	2.982	4.729	6.379	8.746	11.736				
	4	3.503	4.403	6.377	8.621	11.805				
	6	3.630	4.652	6.331	8.743	11.791				
	8	3.666	4.685	6.374	8.917	11.888				
N	10	3.682	4.695	6.375	8.681	11.206				
	12	3.691	4.700	6.375	8.696	11.569				
	14	3.696	4.702	6.375	8.701	11.642				
	16	3.699	4.704	6.375	8.703	11.667				
	18	3.701	4.705	6.375	8.703	11.679				
	20	3.702	4.706	6.375	8.703	11.687				
	Ωe^{a}	3.333	4.333	6.000	8.333					
E	, % b	10.0	7.9	5.9	4.3					
	G_2°	1.481	1.448	1.417	1.393					
=	2			4. 14.						

^aNatural frequency parameter computed from the static effective modulus. ^bThe magnitude of error computed from the formula $Er = (\text{stationary value of frequency} - \Omega e)/\text{stationary value of frequency}$. ^cDynamic effective modulus computed from the stationary value of frequency.

Note: the above three items are listed only for those cases where the stationary value of frequency has or nearly has been reached on or before N=20.

(44)

In total, there are 3N-1 unknowns $[\Omega; m_1, m_2, ..., m_N; A_1^m, A_{2(1)}^m, A_{2(2)}^m, ..., A_N]$ involved in the problem; among them, 3N-2 are independent ones. (One of the amplitude parameters, A_1^m , for example, can be of arbitrary nonzero value.) The independent unknowns can be determined from the 3N-2 equations, already enumerated. Hence, our solution to the problem is well developed and the reduced natural frequency equation can now be derived. By way of illustration, for the case of N=3 the reduced natural frequency equation reads

$$\frac{\sin m_1 \pi}{\sin m_2 \pi} = \left\{ \left[\frac{G_1 m_1 a_2}{G_2 m_2 a_1} \cos m_1 \pi \left(\cos m_2 \pi + \frac{G_3 m_3 a_2}{G_2 m_2 a_3} \frac{\sin m_2 \pi}{\sin m_3 \pi} \cos m_3 \pi \right) \right] / \left[\sin^2 m_2 \pi - \frac{G_3 m_3 a_2}{G_2 m_2 a_3} \frac{\sin m_2 \pi}{\sin m_3 \pi} \cos m_2 \pi \cos m_3 \pi \right] \right\}$$
(31)

When N becomes larger, the reduced natural frequency equation takes a very complicated form. In this situation it is suitable to keep the natural frequency equations in their original form expressed by Eqs. (24-30).

Free Boundary—Problem and Solution

In this section, we discuss the natural axial shear vibration of the laminated composite beam with free lateral surface such that the shearing stresses along the cross section boundary vanish. The corresponding solution can be sought in a similar way as described in the preceding section for beams with fixed surfaces.

Double-Layer Configuration

In this case the governing equation and the interface conditions, [Eqs. (4) and (6)], remain unchanged, but the boundary conditions should be replaced by

$$\frac{\partial w_1}{\partial y} = \frac{\partial w_2}{\partial y} = 0, \qquad y = 0, b, \quad -a_1 \le x \le a_2$$
 (32)

$$\frac{\partial w_1}{\partial x} = \frac{\partial w_2}{\partial x} = 0, \qquad x = -a_1, a_2, \quad 0 \le y \le b$$
 (33)

To satisfy these requirements we propose the displacement functions in the following form:

$$w_1 = A_1^m \cos \frac{m\pi y}{b} \cos \frac{m_1 \pi (x + a_1)}{a_1}$$
 (34)

$$w_2 = A_2^m \cos \frac{m\pi y}{b} \cos \frac{m_2 \pi (x - a_2)}{a_2}$$
 (35)

It can be easily verified that the above equations represent the exact solution to our problem, provided we take m = 0,1,2,... and determine the remaining unknowns in Eqs. (34) and (35) from the following equations:

$$\frac{\rho_i}{G_i} \Omega^2 = \left(\frac{m\pi}{b}\right)^2 + \left(\frac{m_i\pi}{a_i}\right)^2, \qquad i = 1, 2$$
 (36)

$$A_1^m \cos m_1 \pi - A_2^m \cos m_2 \pi = 0 \tag{37}$$

$$m_1 a_2 G_1 A_1^m \sin m_1 \pi + m_2 a_1 G_2 A_2^m \sin m_2 \pi = 0$$
 (38)

The reduced natural frequency equation can be deduced and expressed by

$$G_{1}\sqrt{(\rho_{1}/G_{1})\Omega^{2} - (m\pi/b)^{2}} \tan\left[a_{1}\sqrt{(\rho_{1}/G_{1})\Omega^{2} - (m\pi/b)^{2}}\right] + G_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}} \times \tan\left[a_{2}\sqrt{(\rho_{2}/G_{2})\Omega^{2} - (m\pi/b)^{2}}\right] = 0$$
(39)

Multilayer Configuration

As in the case of double-layer configurations, the governing equation and the interface conditions [Eqs. (17) and (19)] remain unchanged, while the boundary condition should be replaced by

$$\frac{\partial w_i}{\partial y} = 0,$$
 $y = 0, b - a_1 \le x \le a_N;$ $i = 1, 2, ..., N$ (40)

$$\frac{\partial w_i}{\partial x} = 0, \qquad x = -a_1, a_N, \quad 0 \le y \le b; \quad i = 1, N$$
 (41)

We now propose the solution of w_i such that

$$w_1 = A_1^m \cos \frac{m\pi y}{b} \cos \frac{m_1 \pi (x + a_1)}{a_1}$$
 (42)

$$w_{2} = A_{2(1)}^{m} \cos \frac{m\pi y}{b} \cos \frac{m_{2}\pi (x - a_{2})}{a_{2}} + A_{2(2)}^{m} \cos \frac{m\pi y}{b} \cos \frac{m_{2}\pi x}{a_{2}}$$
(43)

$$w_{i} = A_{i(1)}^{m} \cos \frac{m\pi y}{b} \cos \frac{m_{i}\pi [x - (a_{2} + a_{3} + \dots + a_{i})]}{a_{i}} + A_{i(2)}^{m} \cos \frac{m\pi y}{b} \cos \frac{m_{i}\pi [x - (a_{2} + a_{3} + \dots + a_{i-1})]}{a_{i}},$$

$$i = 3, 4, \dots, N-1 \qquad (4)$$

$$w_N = A_N^m \cos \frac{m\pi y}{b} \cos \frac{m_N \pi [x - (a_2 + a_3 + \dots + a_N)]}{a_N}$$
 (45)

Following a procedure similar to that described in the foregoing section, we can assure that the preceding displacement functions satisfy all the requirements mentioned provided we take m = 0, 1, 2, ..., determine m_i from the following formula:

$$\frac{\rho_i}{G_i} \Omega^2 = \left(\frac{m\pi}{h}\right)^2 + \left(\frac{m_i\pi}{a_i}\right), \qquad i = 1, 2, \dots, N$$
 (46)

and find $A_1^m, A_{2(1)}^m, A_{2(2)}^m, \dots, A_N^m$ through the following system of equations:

$$A_1^m \cos m_1 \pi = A_{2(1)}^m \cos m_2 \pi + A_{2(2)}^m \tag{47}$$

$$A_1^m \frac{m_1}{a_1} \sin m_1 \pi = -A_{2(1)}^m \frac{m_2}{a_2} \sin m_2 \pi \tag{48}$$

$$A_{i(1)}^m + A_{i(2)}^m \cos m_i \pi = A_{i+1(1)}^m \cos m_i \pi + A_{i+1(2)}^m$$

$$i=2,3,...,N-2$$
 (49)

Table 2 Numerical values of natural frequency parameter $(\rho_0\Omega^2)/(G_2\pi^2)$ for $G_1/G_2=3$

Table 3 Numerical values of natural frequency parameter $(\rho_0 \Omega^2)/(G_2 \pi^2)$ for $G_1/G_2 = 5$

				 -								· · · · · · · · · · · · · · · · · · ·	
<i>m</i> = 1						<i>m</i> = 1							
	n	1	2	3	4	5		n	1	2	3	4	5
	2	0.840	1.970	4.108	6.986	10.178		2	0.992	2.500	4.646	8.582	12.500
	4	0.875	2.238	4.068	6.370	10.583		4	1.159	2.846	4.785	7.703	12.908
	6	0.875	1.975	4.533	7.053	10.372		6	1.164	2.384	5.861	8.381	11.872
	8	0.875	1.989	3.734	7.739	11.008		8	1.166	2.403	4.273	10.069	13.230
N	10	0.875	1.994	3.809	6.123	11.860	N	10	1.166	2.409	4.389	6.790	15.476
-	12	0.875	1.996	3.835	6.311	9.119		12	1.166	2.412	4.432	7.084	9.915
	14	0.875	1.997	3.848	6.381	9.475		14	1.167	2.413	4.453	7.204	10.460
	16	0.875	1.998	3.855	6.417	9.618		16	1.167	2.414	4.466	7.267	10.700
	18	0.875	1.999	3.860	6.438	9.692		18	1.167	2.415	4.474	7.304	10.830
	20	0.875	1.999	3.863	6.452	9.737		20	1.167	2.415	4.479	7.329	10.910
	20		1.,,,,	5,005	0.102	71.0.		20			7,772	1.527	10.510
	Ωe^{a}	0.750	1.875	3.750				Ωe^{a}	0.833	2.083	4.167		
Er	, % ^b	14.3	6.6	3.0			Er	, % b	28.6	13.7	7.2		
$G\epsilon$	e/G_2^c	1.750	1.599	1.547			Ge	$G_2^{\rm c}$	2.334	1.932	1.796		
			m	= 2						m	= 2		
	n	1	2	3	4	5		n	1	2	3	4	5
	2	1.757	3.484	5.365	8.385	11.530		2	1.861	4.212	6.728	10.000	14.633
	4	2.256	3.359	5.412	7.879	11.902		4	2.945	3.969	6.760	10.000	14.501
	6	2.330	3.494	5.720	8.283	11.685		6	3.234	4.592	7.115	13.712	18.678
	8	2.351	3.498	5.342	8.953	12.158		8	3.319	4.636	6.735	11.382	14.617
N	10	2.360	3.499	5.360	7.793	13.086		10	3.356	4.636	6.743	9.408	16.819
14	12	2.365	3.499	5.366	7.899	10.835	1 4	12	3.375	4.655	6.746	9.536	12.632
	14	2.368	3.500	5.369	7.937	11.096		14	3.387	4.659	6.748	9.584	12.632
	16	2.370	3.500	5.371	7.956	11.197		16	3.394	4.661	6.748		12.991
	18	2.370	3.500	5.372	7.968	11.248			3.394	4.662		9.609	
	20	2.371	3.500	5.373	7.975	11.248		18 20	3.399		6.749	9.624	13.217
	20	2.372	3.300	5.575	1.913	11.200		20	3.402	4.663	6.749	9.633	13.265
	Ωe^{a}	1.875	3.000	4.875				Ωe^{a}	2.083	3.333	5.417		
Er	, ‰ ^b	26.5	14.3	9.3			Er,	, % ^b	38.8	28.5	19.7		
$G\epsilon$	e/G_2^c	1.898	1.750	1.653			Ge	$/G_2^c$	2.725	2.332	2.077		
			m	= 3						m	= 3		
	n	1	2	3	4	5		n	1	2	3	4	5
	. 2	3.086	5.399	7.961	10.585	13.995		2	3.158	5.819	9.842	13.423	17.555
	4	4.159	4.991	7.889	10.474	14.129		4	4.893	5.512	10.473	13.400	17.424
	6	4.584	5.758	7.557	10.535	13.981		6	6.088	7.345	8.930	13.417	17.184
	8	4.719	5.899	7.852	10.888	14.207		8	6.576	7.950	10.231	13.376	17.427
N	10	4.778	5.942	7.865	10.470	15.072	N	10	6.797	8.149	10.382	13.417	18.920
2 •	12	4.809	5.962	7.869	10.486	13.626		12	6.914	8.241	10.429	13.417	16.954
	14	4.827	5.973	7.871	10.491	13.751		14	6.983	8.292	10.452	13.417	17.059
	16	4.838	5.980	7.872	10.494	13.797		16	7.027	8.323	10.452	13.417	17.098
	18	4.846	5.984	7.873	10.496	13.820		18	7.057	8.344	10.473	13.417	17.118
	20	4.852	5.988	7.874	10.497	13.833		20	7.078	8.358	10.479	13.417	17.110
	Ωe^{a}		4.875	6.750	9.375			Ωe^{a}			7 500	10 417	
r.	7, % ^b		4.873 18.7	13.9	10.7		E-	, % b			7.500	10.417	
E I	-, 40 °		18.7	13.9	1.680		Er,	$/G_2^{c}$			28.5	22.4	
G	e/G_2^c		1.044	1./30	1.000		Ge	/ U2			2.332	2.147	

^aNatural frequency parameter computed from the static effective modulus. ^bThe magnitude of error computed from the formula $Er = (stationary value of frequency - \Omega e)/stationary value of frequency. ^cDynamic effective modulus computed from the stationary value of frequency.$

$$A_{N-1(1)}^{m} + A_{N-1(2)}^{m} \cos m_{N-1} \pi = A_{N}^{m} \cos m_{N} \pi$$
 (51)

$$A_{N-1(2)}^{m} \frac{m_{N-1}}{a_{N-1}} \sin m_{N-1} \pi = A_{N}^{m} \frac{m_{N}}{a_{N}} \sin m_{N} \pi$$
 (52)

These formulas can be used to determine the frequency and the vibrating mode of the laminated beam with ply number N>2.

Results and Conclusions

We have obtained the elasticity solution to the problem of natural axial shear vibration of composite beams. Accurate values of natural frequencies and closed forms of vibrating modes can be gained from the solution. In Tables 1-3 we presented numerical values of natural frequencies for a fixed composite beam of periodically alternative plies of uniform thickness (i.e., $G_1 = G_3 = \ldots = G_{N-1}$, $G_2 = G_4 = \ldots = G_N$, $a_1 = a_2 = \ldots = a_N$) in the particular case of b = 2, $a_i = 2/N$, $G_1 = 2G_2$, $3G_2$, $5G_2$, and $\rho_i = \rho_0 = \text{const.}$ We used the last identity to exclude the mass nonuniformity to be coupled with the modulus heterogeneity, which is the main concern of this paper. From the numerical data presented in the

Note: the above three items are listed only for those cases where the stationary value of frequency has or nearly has been reached on or before N=20.

 $A_{i(2)}^{m} \frac{m_{i}}{a_{i}} \sin m_{i} \pi = A_{i+1(1)}^{m} \frac{m_{i+1}}{a_{i+1}} \sin m_{i+1} \pi,$ i = 2, 3, ..., N-2 (50)

^aNatural frequency parameter computed from the static effective modulus. ^bThe magnitude of error computed from the formula $Er = \text{(stationary value of frequency} - \Omega e)/\text{stationary value of frequency}$. ^cDynamic effective modulus computed from the stationary value of frequency.

Note: the above three items are listed only for those cases where the stationary value of frequency has or nearly has been reached on or before N=20.

tables, the following trends can be observed and the following general conclusions can be drawn.

As the ply number of the composite beam increases in accordance with decreasing ply thickness, the natural frequency changes its value rather irregularly for small N; on the other hand, a stationary value of frequency is definitely reached when N becomes sufficiently large. From this phenomenon we see immediately that the effective modulus theory is unfeasible and senseless for composite structural components composed of only a small number of constituents. Hence, later on we will concentrate our discussion on composed beams having a sufficiently large number of plies and on stationary values of frequencies.

Next we see if the effective modulus theory can provide good approximate results to our problem. The static effective modulus in this investigation is expressed by $2G_1G_2/(G_1+G_2)$, and the natural frequency formula for a homogeneous, isotropic, rectangular beam is available and can be written as8

$$\frac{\rho}{G\pi^2} \Omega^2 = \left(\frac{m^2}{b^2} + \frac{n^2}{a^2}\right), \qquad m, n = 1, 2, 3, \dots$$
 (53)

where a and b are the cross-sectional dimensions of the homogeneous beam and ρ , G, and Ω represent its density, shear modulus, and circular frequency, respectively. Using the static effective modulus and Eq. (53), the values of the natural frequencies computed from the effective modulus theory are obtained and listed in Tables 1-3. A comparison of frequency values obtained from the elasticity solution with those obtained from the static effective modulus method is then made, and the result shows that the magnitude of errors incurred by the static effective modulus enlarges as the ratio G_1/G_2 increases. This implies that the effective modulus theory cannot work accurately when the two constitutents of the composite beam have dramatically different material properties. It can also be seen that for a definite value of G_1/G_2 , the magnitude of errors enlarges with increasing m under a fixed value of n but decreases with increasing n under a fixed value of m. This phenomenon shows that the effective moduli of composite materials in dynamic problems strongly depend on both the frequency and mode shape in a very complicated manner. Presenting it as a single constant or even a simple function (e.g., a function whose value monotonously increases with the frequency) is not sufficient for the effective modulus theory to be a reasonably precise one in solving dynamic problems of composite materials.

We can see from the tables that the effective modulus theory based on the static effective modulus can provide adequate accurate results only in the limited scope in which G_1/G_2 , m, and n are all small numbers. In another way of applying the effective modulus theory, we can find the exact value of the dynamic effective modulus in the computation of a particular natural frequency, via substituting the stationary value of the frequency into Eq. (53). It is shown in Tables 1-3 that the dynamic effective modulus thus obtained does not stay constant, but varies accordingly with the magnitude of the errors incurred by the effective modulus theory. This fact again demonstrates that the effective moduli can only be approximately represented by simple constants.

We have analyzed the magnitude of the errors and their influencing parameters in the use of effective modulus theory to solve dynamic problems of composite materials; we also have found that the stationary values of natural frequencies are important quantities for characterizing the natural vibration of composite materials. Therefore, a more adequate form of the dynamic effective modulus theory should be developed in association with the stationary value of natural frequency.

Acknowledgments

The author is grateful to one of the reviewers for his useful comments. This work was supported in part by a grant from the Institute of Aerostructures of China.

References

¹ Jones, R. M., Mechanics of Composite Materials, Scripta Book,

Washington, D.C., 1975, p. 107.

²Ting, T. C. T., "Dynamic Response of Composites," *Applied Mechanics Reviews*, Vol. 33, 1980, pp. 1629–1635.

³Jones, R. M., "Buckling and Vibration of Rectangular Unsymmetry," I. J. 1975, pp. 1629–1635.

metrically Laminated Cross-Ply Plates," AIAA Journal, Vol. 11, Dec. 1973, pp. 1626-1632.

Garg, S. K., Svalbonas, V., and Gurtman, G. A., Analysis of Structural Composite Materials, Marcel Dekker, New York, 1973,

pp. 321-341.

⁵Chamis, C. C., "Wave Propagation and Impact in Composite Materials," Composite Materials, Vol. 7, Academic Press, New York, 1975, pp. 260-325.

Laura, P. A. and Shahady, P. A., "Longitudinal Vibration of a Solid Propellant Rocket Motor," Developments in Theoretical and Applied Mechanics, Vol. 3, Pergamon, London, 1967, pp. 623-633.

Christensen, R. M., Mechanics of Composite Materials, Wiley, New York, 1979, pp. 225-228.

⁸Graff, K. F., Wave Motion in Elastic Solids, Clarendon, Oxford, 1975, p. 226.